1,014 research outputs found

    The Civil Law Enforcement of Contractual Covenants

    Get PDF

    Localization Methods for a Mobile Robot in Urban Environments

    Full text link

    Constraint-based sensor planning for scene modeling

    Full text link

    Bosonization and Duality in Arbitrary Dimensions: New Results

    Get PDF
    A generic massive Thirring Model in three space-time dimensions exhibits a correspondence with a topologically massive bosonized gauge action associated to a self-duality constraint, and we write down a general expression for this relationship. We also generalize this structure to dd dimensions, by adopting the so-called doublet approach, recently introduced. In particular, a non- conventional formulation of the bosonization technique in higher dimensions (in the spirit of d=3d=3), is proposed and, as an application, we show how fermionic (Thirring-like) representations for bosonic topologically massive models in four dimensions may be built up.Comment: Revised version, to appear in Phys. Rev.

    A grid-enabled problem solving environment for parallel computational engineering design

    Get PDF
    This paper describes the development and application of a piece of engineering software that provides a problem solving environment (PSE) capable of launching, and interfacing with, computational jobs executing on remote resources on a computational grid. In particular it is demonstrated how a complex, serial, engineering optimisation code may be efficiently parallelised, grid-enabled and embedded within a PSE. The environment is highly flexible, allowing remote users from different sites to collaborate, and permitting computational tasks to be executed in parallel across multiple grid resources, each of which may be a parallel architecture. A full working prototype has been built and successfully applied to a computationally demanding engineering optimisation problem. This particular problem stems from elastohydrodynamic lubrication and involves optimising the computational model for a lubricant based on the match between simulation results and experimentally observed data

    Propagators for p-forms in AdS_{2p+1} and correlation functions in the AdS_7/(2,0) CFT correspondence

    Get PDF
    In AdS_{2p+1} we construct propagators for p-forms whose lagrangians contain terms of the form A / d A. In particular we explore the case of forms satisfying ``self duality in odd dimensions'', and the case of forms with a topological mass term. We point out that the ``complete'' set of maximally symmetric bitensors previously used in all the other propagator papers is incomplete - there exists another bitensor which can and does appear in the formulas for the propagators in this particular case. Nevertheless, its presence does not affect the other propagators computed so far. On the AdS side of the correspondence we compute the 2 and 3 point functions involving the self-dual tensor of the maximal 7d gauged supergravity (sugra), S_{\mu\nu\rho}. Since the 7 dimensional antisymmetric self-dual tensor obeys first order field equations (S + * d S=0), to get a nonvanishing 2 point function we add a certain boundary term (to satisfy the variational principle on a manifold with boundary) to the 7d action. The 3 point functions we compute are of the type SSB and SBB, describing vertex interactions with the gauge fields B_{\mu}.Comment: 21 pages, Latex file, one reference adde

    The large-scale energetic ion layer in the high latitude Jovian magnetosphere as revealed by Ulysses/HI-SCALE cross-field intensity-gradient measurements

    Full text link
    Ulysses investigated the high latitude Jovian magnetosphere for a second time after Pioneer 11 mission and gave us the opportunity to search the structure and the dynamics of this giant magnetosphere above the magnetodisc. Kivelson(1976) and Kennel & Coroniti(1979) reported that Pioneer 11 observed energetic particle intensities at high latitudes at the same level with those measured in the plasma sheet and inferred that they were not consistent with the magnetodisc model. Ulysses observations supported the idea about a large-scale layer of energetic ions and electrons in the outer high latitude Jovian magnetosphere (Cowley et al.1996; Anagnostopoulos et al. 2001). This study perform a number of further tests for the existence of the large scale layer of energetic ions in the outer high latitude Jovian magnetosphere by studying appropriate cross-B field anisotropies in order to monitor the ion northward/southward intensity gradients. In particular, we examined Ulysses/HI-SCALE observations of energetic ions with large gyro-radius (0.5-1.6MeV protons and >2.5MeV heavy(Z>5) ions) in order to compare instant intensity changes with remote sensing intensity gradients. Our analysis confirms the existence of an energetic particle layer in the north hemisphere, during the inbound trajectory of Ulysses traveling at moderate latitudes, and in the south high-latitude duskside magnetosphere, during the outbound segment of the spacecraft trajectory. Our Ulysses/HI-SCALE data analysis also provides evidence for the detection of an energetic proton magnetopause boundary layer during the outbound trajectory of the spacecraft. During Ulysses flyby of Jupiter the almost permanent appearance of alternative northward and southward intensity gradients suggests that the high latitude layer appeared to be a third major area of energetic particles, which coexisted with the radiation belts and the magnetodisc.Comment: 37 pages, 11 figures, 1 tabl

    Comparison of structural transformations and superconductivity in compressed Sulfur and Selenium

    Full text link
    Density-functional calculations are presented for high-pressure structural phases of S and Se. The structural phase diagrams, phonon spectra, electron-phonon coupling, and superconducting properties of the isovalent elements are compared. We find that with increasing pressure, Se adopts a sequence of ever more closely packed structures (beta-Po, bcc, fcc), while S favors more open structures (beta-Po, simple cubic, bcc). These differences are shown to be attributable to differences in the S and Se core states. All the compressed phases of S and Se considered are calculated to have weak to moderate electron-phonon coupling strengths consistent with superconducting transition temperatures in the range of 1 to 20 K. Our results compare well with experimental data on the beta-Po --> bcc transition pressure in Se and on the superconducting transition temperature in beta-Po S. Further experiments are suggested to search for the other structural phases predicted at higher pressures and to test theoretical results on the electron-phonon interaction and superconducting properties
    • 

    corecore